Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry.

نویسندگان

  • Basudev Roy
  • Sambit Bikas Pal
  • Arijit Haldar
  • Ratnesh Kumar Gupta
  • Nirmalya Ghosh
  • Ayan Banerjee
چکیده

The dynamics of an optically trapped particle are often determined by measuring intensity shifts of the back-scattered light from the particle using position sensitive detectors. We present a technique which measures the phase of the back-scattered light using balanced detection in an external Mach-Zehnder interferometer scheme where we separate out and beat the scattered light from the particle and that from the top surface of our trapping chamber. The technique has improved axial motion resolution over intensity-based detection, and can also be used to measure lateral motion of the trapped particle. In addition, we are able to track the Brownian motion of trapped 1.1 and 3 μm diameter particles from the phase jitter and show that, similar to intensity-based measurements, phase measurements can also be used to simultaneously determine displacements of the trapped particle as well as the spring constant of the trap. For lateral displacements, we have matched our experimental results with a simulation of the overall phase contour of the back-scattered light by using plane wave decomposition in conjunction with Mie scattering theory. The position resolution is limited by path drifts of the interferometer which we have presently reduced to demonstrate the capability of sub-nm displacement resolution in the axial direction for 1.1 μm diameter particles by locking the interferometer to a frequency stabilized diode laser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.

Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provid...

متن کامل

Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous opticall...

متن کامل

Simultaneous calibration of optical tweezers spring constant and position detector response.

We demonstrate a fast and direct calibration method for systems using a single laser for optical tweezers and particle position detection. The method takes direct advantage of back-focal-plane interferometry measuring not an absolute but a differential position, i.e. the position of the trapped particle relative to the center of the optical tweezers. Therefore, a fast step-wise motion of the op...

متن کامل

How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.

Optical traps have shown to be a flexible and powerful tool for 3D manipulations on the microscale. However, when it comes to sensitive measurements of particle displacements and forces thorough calibration procedures are required, which can be already demanding for trapped spheres. For asymmetric structures, with more complicated shapes, such as helical bacteria, novel calibration schemes need...

متن کامل

Improved interferometric tracking of trapped particles using two frequency-detuned beams.

For most optical tweezer applications, precise and reliable tracking of the trapped particle is an important requirement. Backfocal-plane interferometry is the fastest and most accurate tracking technique if the particle displacements are limited to half of the focal width. Especially for positive axial displacements, the nonlinear detector response can lead to incorrect tracking results. Here ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2012